
So You Think You’re Agile?

Colm O’hEocha1, Kieran Conboy1, Xiaofeng Wang2

1 National university of Ireland Galway, 2 University of Limerick,
{c.oheocha2, kieran.conboy}@nuigalway.ie, {xiaofeng.wang}@lero.ie

Abstract. Some agile projects succeed, some fail miserably. Research shows
that time does not necessarily cure such ills and there can be many complex
underlying reasons. Evaluating the ways agility is supported across three
supposedly agile projects reveals a myriad of organizational, human and
political issues. Using a novel approach to assess agile projects from first
principles, this paper outlines several key findings and recommendations
beyond mere compliance to textbook methods.

Keywords: agile methods, adoption, assimilation, experiences, assessment

1 Introduction

When adopting an agile information systems development (ISD) method,
organizations will normally select one or more the defined ‘textbook’ examples such
as Scrum or XP. These provide varying levels of prescriptive practices and tools
which can be implemented directly and promise team agility as a result. When a team
adopts such methods, they normally ‘cherry pick’ practices and adjust them to suit
their project context. There is often little thought of dependencies between practices,
and how the use or non-use of one could affect others. For example, how useful is
continuous build without an automated test suite? Similarly, the way in which the
practices are implemented can vary widely, such as daily stand-up meetings that last
an hour and take the form of upward reporting versus a team ‘touch base’ that takes
10 minutes. Regardless of the practices selected, or how faithfully or effectively they
are implemented, the projects tend to be generally regarded in the organization as
‘agile’ and management will expect to see the perceived benefits such as more
flexibility, better quality and faster delivery. However, with many initial adoptions
these benefits can be elusive with the result that the value of agile methods and their
general perception in the organization can be called into question.

Such early faltering can lead to various ‘agile assessment’ attempts to try to
identify the source of the problems. However, these tend to measure compliance to
the ‘defined’ method, assuming that if everything is implemented as per the
documentation it will resolve the problems. This approach fails to take into account
the particular organizational context of the implementation, and often will encourage
adoption of practices which are defined in the method but may not be appropriate in
the particular case. Furthermore, it does not address the manner in which the practices
are implemented, which can vary widely from project to project. In this paper we

mailto:@nuigalway.ie

present the experience of a global financial services firm with a novel agile
assessment approach, where the true contribution of each practice to the agility itself,
rather than compliance to a defined agile method, is evaluated.

The firm in question has approximately 45,000 employees worldwide. Up to
10,000 of these are IT personnel developing systems to support the business,
distributed across multiple sites in the US, Europe and India. With a history of using
highly formalized, waterfall methods over many years, and with a strong emphasis on
process predictability, the organization has developed programs for CMMi
compliance, ITIL adoption and so on. More recently, agile and lean methods have
gained traction in pockets of the organization. This led to early, ad-hoc trials of Scrum
and XP in some teams. A newly developed proprietary method incorporating many
principles and practices from agile methods such as Scrum is currently being piloted
in several sites. This adoption is being sponsored as part of a larger ‘IT
Transformation’ initiative and is being driven by the global IT organization. In a
collaborative research initiative with practitioners in the company, the authors have
assessed three such trial projects located in an Irish office between July and
September 2009. All were part of distributed teams, but with the majority of analysis,
development and test based in Ireland. One was a ‘green field’ project with some US
members and a small, inexperienced team of five. The other two were larger (10-20)
with US and India based members and were part of larger enterprise wide programs.

2 Assessing Agile Projects

Across the three selected projects, the agile method was being implemented
differently in each. To establish how agile each project was we chose not to look at
compliance to the documented method, but rather look at how each practice supported
or inhibited agility. For this we used a ‘conceptual framework’ for agility which
defines the underlying aspects of an agile team such as creativity ad simplicity.
Therefore, the agile methods in use could be assessed effectively regardless of the
particular practices each project did or did not implement, or indeed how the project
implemented each practice. This approach allowed effective comparison of the three
projects using three different agile implementations – in effect allowing us compare
‘apples and oranges’. Therefore the assessment involved answering the following
questions for each project:

1. What are we meant to be doing? This we call the defined method
2. What are we actually doing? This is the method-in-action [1]
3. Is what we are doing helping us be ‘agile’?

We found that the defined method is a ‘hybrid’ combining both formal,
deterministic elements from the Rational Unified Process (RUP) and agile elements
from Scrum and, to a lesser extent, eXtreme Programming (XP). It can be regarded
as an “iterative rigorous process” [2]. It has well defined disciplines and practices,
and an overall iterative process within which they are executed. The method is
expressed as concrete procedures, guidelines and templates designed to execute the
implementation steps of a well defined project. The method is prescriptive in that it
defines inclusive rules rather than generative [3]. For example, it defines how

requirements should be documented and how peer reviews should be executed. It
could not therefore be regarded as providing only ‘barely sufficient process’ [4].
We then established the method-in-action for each project through interviews with
project managers and senior team members. Research has shown that work methods
are never implemented exactly as defined, varying by project, team and organizational
context [5]. Agile methods generally acknowledge this explicitly, citing the ‘tailoring’
of methods to ensure effectiveness in specific situations. The method-in-action for
each project was found to be quite different. Different sets of practices were used, and
each of these was used differently depending on development context, team context
and rational and political roles the applied method plays. Table 1 below gives a
snippet of the different method-in-action in the three projects regarding the iteration
planning practice.

Table 1. The different method-in-action in the three projects (iteration planning practice)

Practice Text book
definition

Method-in-action
Team A Team B Team C

Iteration
Planning

- Define
scope, tasks
& tests for
the team.
- Design
Iteration
Stories.
- Team owns
estimates.
Estimates in
finer detail.

- 3 week iterations are
used.
- Scope, tasks, estimates
and detailed design are
completed by each track
before iteration planning
meeting.
- Planning Meeting is
more of a brief review of
stories.
- Iteration is planned to
deliver a fixed number
of story points – it is not
‘overloaded’ with
additional stories

- Iterations of 4 weeks
are used.
- Planning day is used to
create user stories and
link them to use cases.
- Each user story is
assigned an owner, who
breaks it into tasks &
leads detailed design
- Early iterations in a
release are ‘overloaded’
with story points to
ensure there is always
work planned

- 4 week iterations, long
enough for largest use
cases.
- Received ABPs and
existing iteration schedule
dictate the use cases to be
included in the iteration
planning.
- Joint design of lower level
use cases/user stories and
breakdown to tasks.
- Iterations are planned to
complete 100% of capacity
– ie no overfilling, even
though some level of
overfilling has been
introduced later on.

Once the method-in-action was established, the third phase involved a half-day focus
group session with each team to establish how each practice supported or inhibited
agility. From a foundation of organizational agility, and with reference to agile
software development, the core contributory concepts of agility have been distilled
[6]. Creativity, proaction, reaction, learning, cost, quality and simplicity are the
foundations of agility. Table 2 below shows how the three projects perceived the
contribution of their version of iteration planning to agility. Depending on how the
method is implemented in each project, different project teams perceive differently
the contribution of the method-in-action to the overall agility of the team. In the
following discussion we take iteration planning as an example to further illustrate this.

In the case of Team A, the iterative planning is regarded negatively in terms of
creativity – the iterations of 3 weeks are regarded as “tight” to deliver the end to end
functionality required for a user centric story. Also, several comments indicate there
are considerable story and scope changes within the iteration, which is likely to
consume what should be implementation time, and further restricting latitude for
creativity. However, proaction and reaction are supported through iterations, though

the need for detailed design and changes within iterations indicates shorter cycles may
be beneficial from this viewpoint. One concern is that stories are often not completely
finished or ‘done done’ within an iteration which could reduce the ability to address
new circumstances effectively through the iteration practice, evidenced by this
comment: “Tough to start an iteration with a clean sheet. Often some queries or issue
from a previous area you worked in crops up which knocks you off”. As with
estimation practice, learning can be inhibited due to the same developers being
assigned tasks similar to ones they previously completed. Story implementation
design is carried out before the planning meeting, with only a review and estimates
shared with the larger team. Additionally, learning is constrained by the lack of on-
going customer feedback: “The result of an iteration is sometimes meaningless since
customer is not engaged and not testing the deliverable of an iteration”. Initially,
iteration planning meetings lasted most of a day and included joint design of stories
by the whole team. However, they were found to be long-winded and ‘boring’. Now
track leads are asked to perform task breakdown and estimation before the planning
meeting, which now lasts less than two hours. This is perceived by the team as a cost
saving since all members do not have to sit through the minute of each story.
However, deployment of each iteration to QA environment is seen as a significant
cost, and one that must be born for each iteration. Together with re-estimation of
stories mid-iteration and problems accommodating these changes in the management
tools, additional cost is added to the iteration practice. This effect is likely to reinforce
the pressure to extend iteration durations, which in turn may exacerbate the overhead
of managing them – in effect creating a ‘vicious cycle’ effect. There was no perceived
effect on the quality or simplicity due to the iteration planning practice.

Table 2. How iteration planning is seen to affect agility across the three projects

Practice:
Iteration
planning

Agility

Creativity Proaction Reaction Learning Cost Quality Simplicity

Team A Poor Good Good Poor Poor
No

Perceived
Effect

No Perceived
Effect

Team B Poor Good Good
No

Perceived
Effect

Good Poor No Perceived
Effect

Team C Conflicting
Opinions

No
Perceived

Effects
Poor Good Poor Conflicting

Opinions
No Perceived

Effects

-
In Team B, contrary to the defined method, iteration planning appears to be
exclusively dedicated to firming up estimates and delivery expectations from the
iteration. The detailed design is either performed by the tracks individually before the
meeting, if the user story is understood, or a “placeholder” is used if not. A firm
commitment of deliverables is given to program management at this stage,
“expectation is set at the start as to what features will be delivered“, with failure to
deliver as planned viewed negatively, “customer wanted the story points to match up
with functionality delivered, it was a big issue if it didn’t match”. In attempts to avoid
such shortfalls, project management front load the release to deliver more than the

teams sustainable capacity of story points in early iterations, thereby creating a
‘buffer’ to absorb unforeseen delays later in the release cycle. Two contrary views on
the effect of this on creativity are expressed. The first calls for longer (e.g. 2 days)
iteration planning which “would help in triggering the learning and creative thoughts
in team” and “all team members participate and focus is on finding
creating/innovative solutions for stories”. But another comment claims “creativity is
helped here by limiting time to define & deliver solution”. The method as defined
calls for detailed design to be done at the iteration planning stage which aids with
accurate estimation and occurs in a team setting before the iteration deliverables are
committed and the ‘clock is ticking’. This context may provide more scope for
alternate approaches to be solicited and evaluated than the time-boxed iteration tasks
allow. Where “placeholders” or “scope-less stories” are concerned, detailed
requirements are not understood until the individual tasks are being executed within
the iteration – at this stage estimates and deliverables have been committed which
may again limit opportunity for creativity. Another concern with iteration planning is
suggested by the comment “too many stories to be closed out at the end of the
iteration can have a negative impact on quality”. According to one comment, the
ability to be proactive and reactive is enhanced for “scope-less stories” since these are
not designed until mid-iteration, just before they are implemented; that is ‘just-in-
time’ design. Interestingly, there were no perceived effects on learning. Progressing
through the planning, design, development, test and deployment tasks might be
expected to offer a strong learning opportunity. However, it is possible that these
effects were attributed to the estimation practice. Initially, planning meetings were a
full day for the entire team and this was regarded as a high cost – the length, and
perceived cost of these has been reduced. However, the work of design, task
breakdown and estimation still must take place – but only the people directly involved
in implementation do this before the planning. Therefore, this cost could be
considered to still exist but has been displaced from this practice. Another factor is
that all team members do not contribute to these tasks for all user stories – this may
also reduce the real cost of this exercise, but to the detriment of creativity and
learning.

In the case of Team C, the team have different opinions on the impact of this
practice in terms of creativity. Since the whole team get together for the planning day,
with “war room allocated” and “shared network”, the team members get good
opportunities to discuss issues and tasks, “think of new ways and better ways to do
things”, and thus be more creative. There was a perceived negative impact on
reaction. One developer commented that the ability of responding to change may be
compromised if the plan was “treated as in stone”, especially by the project
management. The fact that the iteration plan already exists before the planning
meeting may be the factor that influences the attitude of the project management
towards the plan, and eventually impedes the team’s ability to respond to changes.
Iterative planning turned out to be a good learning experience for the team on how to
“gauge work”. As one developer comments, the team’s ability to plan has been
improved and they get more accurate estimates from iteration to iteration, which may
lead to higher quality of resulting plans. However, since the team use 4-week
iterations, typically iteration planning is done for 4 weeks, which is not easy and
makes the planning day very busy and intensive. Quality of resulting plans may be

hampered when people are hurrying to get the big planning done in one day. The team
members feel that it is a huge cost to spend a full day on planning, basically due to the
overhead involved with the project tracking tool associated with the method.
Increasing effort such as loading estimates and stories and maintaining the tracking
tool takes more time than necessary, and the team felt it impacted negatively on
simplicity.

3 Findings and Recommendations

Although considerable data was collected for each of the twenty two defined practices
in the method (as per the iteration planning described above), due to space limitations
we can only provide a summary here (due to confidentiality concerns of the company
please contact the authors directly for further access to detail data from the study).
Analysing input from across the three project teams, a number of common ‘themes’
emerged. Three of these major areas are discussed here, along with actions being
taken to improve them. The recommendations have led to improvements in the three
projects, but more importantly, in the enterprise wide agile adoption program.

3.1 Iterative Development is not Agile Development

Performing planned but iterative development does not equate to agile development.
The method studied here is a variant of the Rational Unified Method (RUP) and
combines up-front planning with iterative development. This is sometimes described
as ‘Serial in the large, iterative in the small’ and is often justified as an enterprise
scalable approach to agile development. It includes up front commitment to a release
plan with major features agreed with the customer, and detail to be added later.
However, the method cannot be considered highly agile, even though it does allow for
the iterative delivery of applications. This is reflected in developers comments such as
“Feels like we’re doing mini-waterfall instead of agile” and “Agile development,
waterfall everything else”.

A fundamental concept in agile methods is an effective feedback loop – where
plans are frequently evaluated against current reality and adjusted accordingly. In the
projects studied, iterations did deliver software, but not necessarily working software
whereby customers could interact fully with it. User stories often required
coordination of several tasks across various ‘component teams’ and the hand-offs and
synchronization involved meant end-to-end functionality could not be completed in a
single iteration. Therefore, reflection on the iteration was normally confined to the
development team rather than involving all stakeholders, and adaptation was therefore
limited.

As implemented, the proprietary method lacks an effective feedback loop.
Customers are not involved in the process on a continuous basis, developers are
pressured to comply with original plans and schedules rather than adjust them based
on current experience, and even feedback between dependant projects in the same
program are not synchronised. This lack of ongoing communication intensity leads to

a reversion to ‘management by plan’, which, in turn, severely limits agility of the
method.

To tackle some of these problems, several recommendations were made. The
intensive face to face ‘visioning’ and planning session used at the start of the project,
although getting initial development off to a great start, is no substitute for ongoing
customer involvement. This ‘group solve’ process [7] involved all stakeholders in
extended, co-located and facilitated workshop sessions over a period of six weeks
which served to form relationships across the team and define and prioritize
requirements. Such intensive, face-to-face communication should be made a
mandatory step in the initiation of any major project. However, this must be followed
by on-going, rich (ideally face to face, but at minimum video based) communication
between stakeholders, especially customers. Such an ongoing arrangement could
mean a shorter and less costly initial planning phase. The cost of keeping stakeholders
aligned would be spread throughout the project, rather than focused in a single intense
effort. The time and resources to facilitate this critical stakeholder feedback must be
built into the project plan. Senior management must understand the necessity and
value of this practice and ensure it doesn’t lapse later in the project. In addition, the
root causes why user stories cannot be shortened should be investigated and debated.
Are component teams the best organizational structure if agility is the end goal? End
of iteration customer checkpoints should be made mandatory, and only ‘done done’
stories should be demonstrated.

Where the project is a minor development, the use of a Project Charter type
document jointly developed and owned by the various stakeholders is a cost efficient,
though not as effective, alternative to establishing a baseline for the project. This
document should include business objectives, how business value from the project
will be measured and communicated, and a high-level release plan and associated
themes. However, ongoing, effective communication with customers is still essential.

To underline the importance of embracing change in agile projects, the change
'control' boards for the projects should be renamed to change ‘facilitation' boards or
another title that doesn’t cast change in a negative light. This would support the agile
manifesto principle whereby we should “harness change for customer competitive
advantage”.

3.2 Focus on Value Delivered, not Effort Expended

Planning on the projects was focused on estimating Level Of Effort (LOE) and
creating a plan accordingly. The role of project manager was little different from the
waterfall approach with establishing and driving the plan still very much in evidence.
Story points are based on the time taken to complete work. Tracking of the project
progress is based on the number of story points completed. In one project,
management insisted that the iteration deliver exactly (or more) the story point
capacity of the team.

This approach leads the team to focus on the cost of delivery, rather than the
customer value being delivered. This adversely affects several important agile
principles. Delivering early & continuous value flow through short iterations of
working software is important for maximising value, but has little affect on LOE. The

tenet of ‘Quality is not Negotiable’ is undermined in preference to maximising the
scope delivered, and hence story points. In Lean thinking, the creation of WIP is
discouraged as it consumes effort, even though it creates no value. In one project, so-
called ‘administration stories’ are created by the team to cover tasks such as code
reviews. These were initially included as a task in the user story, but it was found to
be more efficient to review several stories in one meeting. So to allow story points for
the work done on these before they were code reviewed, the task was moved into an
administrative story. Although it may be easier to manage, this encourages WIP and
ignores customer value flow concerns.

Another finding was a perception by some that the method was being used to
‘micro-manage’ development. Senior developers and project managers are requested
to provide initial estimates at project and release planning stage. These are based on
limited information of requirements or context. Project plans are drawn up based on
these estimates and agreed with senior management and customers. During
development, when reality does not reflect these plans, it is the responsibility of the
developers to justify the divergence. Some comments on this topic included “any
deviation from estimates has high visibility with restrictive results for the team” and
would be seen “in a negative light” Team members felt this leads to pressure on
development, and unnecessary overhead and stress when variances have to be
explained.

It is difficult to see why the initial plans, based as they are on limited information,
and with little buy-in from those performing the work, should be treated as the
benchmark for the project. Interestingly, several senior developers emphasized with
pride how their estimates had become increasingly accurate throughout the project.
The attention given to the estimates indicated their high importance to the team and
likely underscores how they are perceived as a measure of performance.

Since all projects faltered in getting a viable customer feedback loop in place, it is
easy to see that measuring effort expended is easier than value delivered. This in turn
drives ‘efficiencies’ such as grouping code reviews for several stories into a single
meeting and making user stories large enough to allow developers get a ‘good run’ at
a certain area of code. It also undermines the imperative to automate testing as this
becomes an ‘occasional’ rather than ‘continuous’ activity.

Recommendations to tackle these issues included refocusing on user stories that
are customer centric and deliver the smallest feature of value to the customer,
delivering ‘done done’ stories from each iteration, driving training and resources into
automated testing and establishing transparent and common test coverage metrics
across projects.

‘Epics’, ‘themes’ and ‘stories’ should only define the bare minimum of detail
required at the time, acknowledging that changes will occur as the project progresses
and premature detail will be a wasted effort. These agile constructs should also
express requirements in terms of customer value rather than application functionality
and are fundamental to achieving continuous, early value flow and implicit
traceability of requirements to implementation. Move from up-front, contractually-
oriented scope definition to a more collaborative, scope-variable approach where
shared ownership and responsibility are the norm. Innovation starts with
requirements, and elaboration should include diverse perspectives and skills including
end customer, developers and testers.

The ability to continuously integrate and automatically test all sub-systems of an
enterprise solution should be invested in as a critical IT competency. CI is a
cornerstone of agile development and must be recognised as such by senior
management, with necessary resources provided to arrive at effective, re-usable
technologies and to provide for their implementation in any substantial project.

Establish a mechanism to measure test coverage that is common across projects.
For unit tests, develop guidelines on how coverage should be measured (lines of code,
method calls, functions, boundary conditions, etc) and coverage targets. The measure
should aim to ensure priority is to test critical code and to avoid writing test code
merely to meet coverage targets. Where targets are less than 100%, justification for
this should be required (if the code isn’t used – remove it). Similarly, for acceptance
tests, coverage of user stories should be measurable in a consistent manner.

3.3 Agility Needs More than Agile Development Practices
The introduction of agile software development in the case organization focused on
the new method and associated practices. Other organizational and people aspects
received scant attention. Traditional roles such as project manager, team lead,
developer, tester, analyst and the demarcation of responsibilities they represent still
persist. Attention to individual capabilities and diversity of teams is not evident.
There is little evidence of self-organising teams, or evolving from manager to
facilitator roles. Tactics such as rotating team members between tracks, roles and
projects to support diversity and cross team learning have not been adopted. Objective
setting, performance reviews, training and other HR related activities do not seem to
reflect the move to a new way of working.

In addition, the agile way of organizing work seems confined to the software
delivery teams – portfolio and program management continue to work to predefined
plans. One of the projects studied involved a component team building services to be
called by front-end user applications which were being developed by other IT groups.
Although these groups were nominally using the same ISD method, coordination
between the projects was by plan rather than an agile reflect-adapt feedback loop. As
reality impinged upon the project, the synchronization plan became irrelevant. The
feedback loop between the component team and the front end feature team could not
be maintained. As both teams belonged to different IT organizations, a very ‘cautious’
relationship developed as neither wanted to appear to fail to execute to plan. Some
‘arms-length’ solutions such as one project running an iteration behind the other were
attempted but these do not seem to have resolved the difficulties, and have led to
‘mini-waterfalls’ in some cases. This failure indicates a need to apply more agile and
effective co-ordination at the level of the portfolio, product or program.

A re-examination of the roles in the project was recommended, including a move
from management to facilitation and the development of self-organizing teams. From
simple measures such as rotating the role of facilitator in team meetings, to a re-
examination of the role of the project managers and a move away from component
based to product, project or feature centric organizational structures were
recommended. To increase information redundancy and thereby increase team
cohesion and resilience, job rotation within long life teams were advocated. Task
estimation should be a team activity, using planning poker or a similar technique,

rather than being the preserve of the ‘expert’ in the technical area involved. To
encourage continual learning, tasks should be allocated as people become free, rather
than on the basis of expertise, which reinforces the development of silos and
indispensable ‘heroes’.

4. Conclusions

This study used the method-in-action framework to characterize how an agile method
had been implemented differently across three projects. Although all three were
regarded within the organization as using the same agile method, there were
significant differences in how it had been implemented. By evaluating each project
against a set of underlying agile concepts on a practice by practice basis, we were able
to assess how each supported or inhibited agility. This approach revealed that,
although adopting the agile method had led to improvements in certain areas, it could
not be regarded as highly agile. An incomplete feedback-adaptation loop, a focus on
effort expended rather than value delivered and a lack of attention to people and
organizational structure aspects severely limited the agility of the method. The
‘cherry-picking’ of practices without due consideration of how they inter-relate, along
with wide variances in how each practice was implemented, led to an agile method
adoption delivering little agility. Agile adopters need to focus on achieving
underlying agility by carefully choosing and implementing practices, but also looking
at people, roles and organizational structure, as well as dependencies between
practices and how they work together.

References

1. Fitzgerald, B., N. Russo, and E. Stolterman, Information Systems
Development: Methods in Action. 2002, London: McGraw-Hill.

2. Ambler, S. Choose the Right Software Method for the Job. Available from:
http://www.agiledata.org/essays/differentStrategies.html.

3. Highsmith, J. and A. Cockburn, Agile Software Development: The
Business of Innovation, in IEEE Computer. 2001, IEEE.

4. Highsmith, J., Agile Software Development Ecosystems. 2002, Boston,
MA: Pearson.

5. Madsen, S., K. Kautz, and R. Vidgen, A framework for understanding how
a unique and local IS development method emerges in practice. European
Journal of Information Systems, 2006. 15: p. 225-238.

6. Conboy, K., Agility From First Principles: Reconstructing The Concept Of
Agility In Information Systems Development. Information Systems
Research, 2009. 20(3).

7. Takats, A. and N. Brewer. Improving Communication between Customers
and Developers. in Agile Development Conference (ADC’05). 2005.
Denver: IEEE Computer Society.

